首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   906篇
  免费   82篇
  2023年   3篇
  2022年   4篇
  2021年   20篇
  2020年   4篇
  2019年   18篇
  2018年   20篇
  2017年   19篇
  2016年   25篇
  2015年   47篇
  2014年   46篇
  2013年   50篇
  2012年   71篇
  2011年   58篇
  2010年   53篇
  2009年   41篇
  2008年   51篇
  2007年   46篇
  2006年   33篇
  2005年   38篇
  2004年   44篇
  2003年   29篇
  2002年   27篇
  2001年   22篇
  2000年   28篇
  1999年   18篇
  1998年   27篇
  1997年   16篇
  1996年   17篇
  1995年   10篇
  1994年   6篇
  1993年   4篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   9篇
  1976年   7篇
  1975年   3篇
  1970年   2篇
  1968年   4篇
排序方式: 共有988条查询结果,搜索用时 140 毫秒
41.
The macrophage scavenger receptor SR-AI binds to host tissue debris to perform clearance and it binds to bacteria for phagocytosis. In addition, SR-AI modulates macrophage activation through cell signaling. However, investigation of SR-AI signaling on macrophages is complicated due to its promiscuous ligand specificity that overlaps with other macrophage receptors. Therefore, we expressed SR-AI on HEK 293T cells to investigate its ligand binding and signaling. On 293T cells, SR-AI could respond to E. coli DH5α, leading to NF-κB activation and IL-8 production. However, this requires E. coli DH5α to be sensitized by fresh serum that is treated with heat-inactivation or complement C3 depletion. Anti-C3 antibody inhibits the binding of SR-AI to serum-sensitized DH5α and blocks DH5α stimulation of SR-AI signaling. Further analysis showed that SR-AI can directly bind to purified iC3b but not C3 or C3b. By mutagenesis, The SRCR domain of SR-AI was found to be essential in SR-AI binding to serum-sensitized DH5α. These results revealed a novel property of SR-AI as a complement receptor for iC3b-opsonized bacteria that can elicit cell signaling.  相似文献   
42.
Aims:  To investigate the microbial ecology of three facultative swine waste lagoons.
Methods and Results:  Phylogenetic analysis of sequences in a 16S rRNA gene clone library and fluorescence in situ hybridization (FISH) analyses were used to assess bacterial diversity in a swine waste lagoon. FISH analysis and Gram-staining were used to compare the microbial communities of all three swine waste lagoons. Six operational taxonomic units were in high relative abundance and corresponded to the following phylotypes; Thiolamprovum , Verrucomicrobia , Acholeplasma , Turicibacter , Clostridium and Bacteroides . PCR was employed to detect the genes apsA and dsrAB which encode for enzymes specifically associated with dissimilatory sulfate-reduction within sulfate-reducing bacteria (SRB). Amplification of these genes confirmed their presence within the lagoons.
Conclusions:  All lagoons were dominated by purple sulfur bacteria, affiliated to Thiolamprovum pedioforme . The molecular identification of fermentative bacteria and SRB indicate the following metabolic processes within such facultative ponds: sulfur-cycling, fermentation, inter-species hydrogen transfer and carbon cycling.
Significance and Impact of the Study:  This study provides the first molecular evidence for the existence of a sulfur cycle which is linked to phototrophic sulfide oxidation by purple bacteria and organotrophic sulfate-reduction by SRB.  相似文献   
43.
44.
Low reaction yields and the high cost of obtaining a single type of pure CD make γ-CD costly. Using rational design and with the aid of 3D modeling structures, recombinant CGTase from Bacillus sp. G1 was molecularly engineered with the aim of producing a higher percentage of γ-CD. A single mutation at subsite −3, denoted H43T, was found to increase γ-CD production from 10% to approximately 39% using tapioca starch. This novel increment was probably the result of reduced steric hindrance to the formation of γ-CD because of the shortened side chain together with the shortened loop at positions 86–89, at substrate-binding subsite −3. A mutation (Tyr188 → Trp) and a deletion at loop 139–144 showed little effect on product specificity; however, mutagenesis at these sites affected cyclization, coupling and hydrolysis activities as well as the kinetic properties of the mutant CGTase. Based on rational design, three further mutations of the mutant H43T (denoted H43T/Δ(139–144)/S134T/A137V/L138D/V139I, H43T/S85G and H43T/Y87F) were constructed and produced γ-CD with yields of 20%, 20% and 39%, respectively. The mutant H43T/Δ(139–144)/S134T/A137V/L138D/V139I had very low cyclization and coupling activities, however their hydrolysis activity was retained. Double mutation (H43T/S85G) caused the enzyme to exhibit higher starch hydrolysis activity, approximately 26 times higher than the native CGTase G1. Although the mutants H43T and H43T/Y87F could produce the same percentage (39%) of γ-CD, the latter was more efficient as the total amount of CD produced was higher based on the Vmax and kcat values.  相似文献   
45.
The marine phytoplankton, Karenia mikimotoi, causes severe red tides which are associated with mass mortality of marine fish, and have expanded their distributions in the coastal waters of western Japan. To assess the dispersal mechanism, a population genetic study using highly polymorphic genetic markers is one of the crucial approaches. Here we developed 12 polymorphic microsatellite markers from K. mikimotoi. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from 5 to 23, and the estimate of gene diversity was from 0.551 to 0.933 across the 12 microsatellites. We consider these loci potentially useful for detailing the genetic structure and gene flow among K. mikimotoi populations.  相似文献   
46.
pH is a ubiquitous regulator of biological activity, including protein‐folding, protein‐protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH‐dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi‐site λ‐dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi‐site λ‐dynamics, and designed novel biasing potentials to ensure that the physical end‐states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH‐dependent properties of proteins such as the Hen‐Egg White Lysozyme (HEWL), binding domain of 2‐oxoglutarate dehydrogenase (BBL) and N‐terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH‐dependent properties of both major class of biomolecules—proteins and nucleic acids is now possible. Proteins 2014; 82:1319–1331. © 2013 Wiley Periodicals, Inc.  相似文献   
47.
BackgroundCurrently, it is well established that cancer arises in chronically inflamed tissue. A number of NOD-like receptors (NLRs) form inflammasomes, intracellular multiprotein complexes critical for generating mature pro-inflammatory cytokines (IL-1β and IL-18). As chronic inflammation of the gastric mucosa is a consequence of Helicobacter pylori infection, we investigated the role of genetic polymorphisms and expression of genes involved in the NLR signalling pathway in H. pylori infection and related gastric cancer (GC).ResultsCARD8-rs11672725, NLRP3-rs10754558, NLRP3-rs4612666, NLRP12-rs199475867 and NLRX1-rs10790286 showed significant associations with GC. On multivariate analysis, CARD8-rs11672725 remained a risk factor (OR: 4.80, 95% CI: 1.39–16.58). Further, NLRP12-rs2866112 increased the risk of H. pylori infection (OR: 2.13, 95% CI: 1.22–3.71). Statistical analyses assessing the joint effect of H. pylori infection and the selected polymorphisms revealed strong associations with GC (CARD8, NLRP3, CASP1 and NLRP12 polymorphisms). In gene expression analyses, five genes encoding NLRs were significantly regulated in H. pylori-challenged cells (NLRC4, NLRC5, NLRP9, NLRP12 and NLRX1). Interestingly, persistent up-regulation of NFKB1 with simultaneous down-regulation of NLRP12 and NLRX1 was observed in H. pylori GC026-challenged cells. Further, NF-κB target genes encoding pro-inflammatory cytokines, chemokines and molecules involved in carcinogenesis were markedly up-regulated in H. pylori GC026-challenged cells.ConclusionsNovel associations between polymorphisms in the NLR signalling pathway (CARD8, NLRP3, NLRP12, NLRX1, and CASP1) and GC were identified in Chinese individuals. Our genetic polymorphisms and gene expression results highlight the relevance of the NLR signalling pathway in gastric carcinogenesis and its close interaction with NF-κB.  相似文献   
48.

Background

Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment.

Methods and Findings

H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance.

Conclusion

Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high).  相似文献   
49.
Lipid droplets (LDs) were once viewed as simple, inert lipid micelles. However, they are now known to be organelles with a rich proteome involved in a myriad of cellular processes. LDs are heterogeneous in nature with different sizes and compositions of phospholipids, neutral lipids and proteins. This review takes a focused look at the roles of proteins involved in the regulation of LD formation, expansion, and morphology. The related proteins are summarized such as the fat-specific protein (Fsp27), fat storage-inducing trans- membrane (FIT) proteins, seipin and ADP-ribosylation factor 1-coat protein complex I (Arf-COPI). Finally, we present important challenges in LD biology for a deeper understanding of this dynamic organelle to be achieved.  相似文献   
50.

Background

Germline defects of mismatch repair (MMR) genes underlie Lynch Syndrome (LS). We aimed to gain comprehensive genetic and epigenetic profiles of LS families in Singapore, which will facilitate efficient molecular diagnosis of LS in Singapore and the region.

Methods

Fifty nine unrelated families were studied. Mutations in exons, splice-site junctions and promoters of five MMR genes were scanned by high resolution melting assay followed by DNA sequencing, large fragment deletions/duplications and promoter methylation in MLH1, MSH2, MSH6 and PMS2 were evaluated by multiplex ligation-dependent probe amplification. Tumor microsatellite instability (MSI) was assessed with five mononucleotide markers and immunohistochemical staining (IHC) was also performed.

Results

Pathogenic defects, all confined to MLH1 and MSH2, were identified in 17 out of 59 (28.8%) families. The mutational spectrum was highly heterogeneous and 28 novel variants were identified. One recurrent mutation in MLH1 (c.793C>T) was also observed. 92.9% sensitivity for indication of germline mutations conferred by IHC surpassed 64.3% sensitivity by MSI. Furthermore, 15.6% patients with MSS tumors harbored pathogenic mutations.

Conclusions

Among major ethnic groups in Singapore, all pathogenic germline defects were confined to MLH1 and MSH2. Caution should be applied when the Amsterdam criteria and consensus microsatellite marker panel recommended in the revised Bethesda guidelines are applied to the local context. We recommend a screening strategy for the local LS by starting with tumor IHC and the hotspot mutation testing at MLH1 c.793C>T followed by comprehensive mutation scanning in MLH1 and MSH2 prior to proceeding to other MMR genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号